
Chapter 9 

Numerical Linear Algebra 

9.1 Gaussian Elimination in Practice 

Numerical linear algebra is a struggle for quick solutions and also accurate solutions. We 
need efficiency but we have to avoid instability. In Gaussian elimination, the main freedom 
(always available) is to exchange equations. This section explains when to exchange rows 
for the sake of speed, and when to do it for the sake of accuracy. 

The key to accuracy is to avoid unnecessarily large numbers. Often that requires us to 
avoid small numbers! A small pivot generally means large multipliers (since we divide by 
the pivot). A good plan is "partial pivoting", to choose the largest candidate in each new 
column as the pivot. We will see why this strategy is built into computer programs. 

Other row exchanges are done to save elimination steps. In practice, most large matrices 
are sparse-almost all entries are zeros. Elimination is fastest when the equations are 
ordered to put those zeros (as far as possible) outside the band of nonzeros. Zeros inside 
the band "fill in" during elimination-the zeros are destroyed and don't help. 

Section 9.2 is about instability that can't be avoided. It is built into the problem, and 
this sensitivity is measured by the "condition number". Then Section 9.3 describes how to 
solve Ax = b by iterations. lnstead of direct elimination, the computer solves an easier 
equation many times. Each answer x k leads to the next guess x k+ l' For good iterations, 
like conjugate gradients, the Xk converge quickly to x = A-lb. 

The Fastest Supercomputer 

A new supercomputing record was announced by IBM and Los Alamos on May 20, 2008. 
The Roadrunner was the first to achieve a quadrillion (1015 ) floating-point operations per 
second: a petajlop machine. The benchmark for this world record was a large dense linear 
system Ax = b: linear algebra. 

The LINPACK software does elimination with partial pivoting. The biggest difference 
from this book is to organize the steps to use large submatrices and never single numbers. 
Roadrunner is a multicore Linux cluster with very remarkable processors, based on the 

465 



466 Chapter 9. Numerical Linear Algebra 

Cell Broadband Engine from Sony's PlayStation 3. The market for video games dwarfs 
scientific computing and led to astonishing acceleration in the chips. 

This path to petascale is not the approach taken by IBM's BlueGene. A key issue was to 
count the standard quad-core processors that a petaflop machine would need: 32,000. The 
new architecture uses much less power, but its hybrid design has a price: a code needs three 
separate compilers and explicit instructions to move all the data. Please see the excellent 
article in SIAM News (siam.org, July 2008) and the details on www.lanl.gov/roadrunner. 

The TOP500 project ranks the most powerful computer systems in the world. Road­
runner and BlueGene are #1 and #2 as this page is written in 2009. 

Our thinking about matrix calculations is reflected in the highly optimized BLAS 
(Basic Linear Algebra Subroutines). They come at levels 1,2, and 3: 

1 Linear combinations of vectors au + v: O(n) work 

2 Matrix-vector multiplications Au + v: O(n 2 ) work 

3 Matrix-matrix multiplications AB + C: O(n3) work 

Levell is a single elimination step (multiply row j by.eij and subtract from row i). Level 2 
can eliminate a whole column at once. A high performance solver is rich in Level 3 BLAS 
(AB has 2n 3 flops and 2n2 data, a good ratio of work to talk). 

It is data passing and storage retrieval that limit the speed of parallel processing. The 
high-velocity cache between main memory and floating-point computation has to be fully 
used! Top speed demands a block matrix approach to elimination. 

The big change, coming now, is parallel processing at the chip level. 

Roundoff Error and Partial Pivoting 

Up to now, any pivot (nonzero of course) was accepted. In practice a small pivot is danger­
ous. A catastrophe can occur when numbers of different sizes are added. Computers keep a 
fixed number of significant digits (say three decimals, for a very weak machine). The sum 
10,000 + 1 is rounded off to 10,000. The "I" is completely lost. Watch how that changes 
the solution to this problem: 

.0001u + v = 1 
-u + v = 0 

starts with coefficient matrix 

If we accept .0001 as the pivot, elimination adds 10,000 times row 1 to row 2. Roundoff 
leaves 

1O,000v = 10,000 instead of 1O,00Iv = 10,000. 

The computed answer v = I is near the true v = .9999. But then back substitution puts 
the wrong v into the equation for u: 

.00o;t~:+-i:C'CCtlT:F:Ai~(i.~~,~;;~j~::,t.OOOl--;~ +-.9999- ···--1.-;: 

The first equation gives u = O. The correct answer (look at the second equation) is u = 
1.000. By losing the" 1" in the matrix, we have lost the solution. The change from 10,001 
to 10,000 has changed the answer from u = 1 to u = 0 (100% error!). 
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If we exchange rows, even this weak computer finds an answer that is correct to three 
places: 

-u + v = 0 
.000Iu + v = 1 

-u + v = 0 
v = 1 

u = 1 
v = 1. 

The original pivots were .0001 and 1O,000-badly scaled. After a row exchange the exact 
pivots are -1 and 1.000 I-well scaled. The computed pivots -1 and 1 come close to the 
exact values. Small pivots bring numerical instability, and the remedy is partial pivoting. 
The kth pivot is decided when we reach and search column k: 

Choose the largest number in row k or below. Exchange its row with row k. 

The strategy of complete pivoting looks also in later columns for the largest pivot. It ex­
changes columns as well as rows. This expense is seldom justified, and all major codes 
use partial pivoting. Multiplying a row or column by a scaling constant can also be very 
worthwhile. If the first equation above is u + 10,000v = 10,000 and we don't rescale, 
then 1 looks like a good pivot and we would miss the essential row exchange. 

For positive definite matrices, row exchanges are not required. It is safe to accept 
the pivots as they appear. Small pivots can occur, but the matrix is not improved by row 
exchanges. When its condition number is high, the problem is in the matrix and not in the 
code. In this case the output is unavoidably sensitive to the input. 

The reader now understands how a computer actually solves Ax = h-by elimination 
with partial pivoting. Compared with the theoretical description-find A-I and multiply 
A -I b-the details took time. But in computer time, elimination is much faster. I believe 
this algorithm is also the best approach to the algebra of row spaces and nUlIspaces. 

Operation Counts: Full Matrices and Band Matrices 

Here is a practical question about cost. How many separate operations are needed to solve 
Ax = h by elimination? This decides how large a problem we can afford. 

Look first at A, which changes gradually into U. When a multiple of row 1 is subtracted 
from row 2, we do n operations. The first is a division by the pivot, to find the multiplier .e. 
For the other n - 1 entries along the row, the operation is a "multiply-subtract". For conve­
nience, we count this as a single operation. If you regard multiplying by .e and subtracting 
from the existing entry as two separate operations, multiply all our counts by 2. 

The matrix A is n by n. The operation count applies to all n - 1 rows below the first. 
Thus it requires n times n - 1 operations, or n2 - n, to produce zeros below the first pivot. 
Check: All n 2 entries are changed, except the n entries in the first row. 

When elimination is down to k equations, the rows are shorter. We need only k 2 - k 
operations (instead of n2 - n) to clear out the column below the pivot. This is true for 
1 < k ::: n. The last step requires no operations (12 - 1 = 0), since the pivot is set and 
forward elimination is complete. The total count to reach U is the sum of k 2 - k over all 
values of k from 1 to n: 

2 2) ( ) n(n + 1)(2n + 1) n(n + l)"tj~'\';+.,1i'·' 
(1 + ... + n - 1 + ... + n = 6 - 2 = ;'</~.:';':" 
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Those are known formulas for the sum of the first n numbers and the sum of the first n 
squares. Substituting n = 1 into n3 - n gives zero. Substituting n = 100 gives a million 
minus a hundred-then divide by 3. (That translates into one second on a workstation.) 
We will ignore the last term n in comparison with the larger term n 3 , to reach our main 
conclusion: 

The multiply-subtract count for forward elimination (A to U, producing L) is ln3• 

That means ~n3 multiplications and ~n3 subtractions. Doubling 11 increases this cost by 
eight (because 11 is cubed). 100 equations are easy, 1000 are more expensive, 10000 dense 
equations are close to impossible. We need a faster computer or a lot of zeros or a new 
idea. 

On the right side of the equations, the steps go much faster. We operate on single 
numbers, not whole rows. Each right side needs exactly n 2 operations. Down and back 
up we are solving two triangular systems, Lc = b forward and U x = c backward. In back 
substitution, the last unknown needs only division by the last pivot. The equation above 
it needs two operations-substituting x n and dividing by its pivot. The kth step needs k 
multiply-subtract operations, and the total for back substitution is 

n(11 + 1) 1 2 
1 + 2 + ... + 11 = 2 ~ 211 operations. 

The forward part is similar. The n 2 total exactly equals the count for mUltiplying A-I b ! 
This leaves Gaussian elimination with two big advantages over A-I b: 

'1 Eiilitifiatltiht,{uites .. !n3ctinfaredt({n'3tof:A~ 1~" 

·}~.l~S~i~~,~~~t~~~~;~.~~fA~¥j~;~~!lf'Qu!!~l;O,$' 
,'<',<\,; 

Band Matrices 

These counts are improved when A has "good zeros". A good zero is an entry that remains 
zero in Land U. The best zeros are at the beginning of a row. They require no elimination 
steps (the multipliers are zero). So we also find those same good zeros in L. That is 
especially clear for this tridiagonal matrix A: 

Tridiagonal 1 -1 1 1 -1 
Bidiagonal -1 2 -1 -1 1 1 -1 
times -1 2 -1 -1 1 1 -1 
bidiagonal -1 2 -1 I I 

Rows 3 and 4 of A begin with zeros. No multiplier is needed, so L has the same zeros. 
Also columns 3 and 4 start with zeros. When a multiple of row 1 is subtracted from row 2, 
no calculation is required beyond the second column. The rows are short. They stay short! 
Figure 9.1 shows how a band matrix A has band factors Land U. 
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A= =LU 

Figure 9.1: A = L U for a band matrix. Good zeros in A stay zero in Land U. 

These zeros lead to a complete change in the operation count, for "half-bandwidth" w: 

A band matrix has aij = 0 when Ii - j I > w. 

Thus w = I for a diagonal matrix, w = 2 for tridiagonal, w = n for dense. The length of 
the pivot row is at most w. There are no more than w - 1 nonzeros below any pivot. Each 
stage of elimination is complete after w( w -1) operations, and the band structure survives. 
There are n columns to clear out. Therefore: 

Elimination OIl a band matrix (A to Land U) needs less than w2n operations. 

For a band matrix, the count is proportional to n instead of n3 . It is also proportional to w 2 • 

A full matrix has w = n and we are back to n 3 . For an exact count, remember that the 
bandwidth drops below w in the lower right comer (not enough space): 

Band 
w(w - 1)(3n - 2w + 1) 

3 
Dense 

n(n - 1)(n + 1) 

3 3 

On the right side, to find x from b, the cost is about 2wn (compared to the usual n2). Main 
point: For a band matrix the operation counts are proportional to n. This is extremely fast. 
A tridiagonal matrix of order 10,000 is very cheap, provided we don't compute A-I. That 
inverse matrix has no zeros at all: 

1 -1 0 0 4 3 2 1 

A= 
-1 2 -1 0 

has A-I = U-1 L -1 = 3 3 2 1 
0 -1 2 -1 2 2 2 1 
0 0 -1 ' 2 1 1 1 1 , 

We are actually worse off knowing A-I than knowing Land U. Multiplication by A-I 
needs the full n2 steps. Solving Lc = band U x = c needs only 2wn. A band structure 
is very common in practice, when the matrix reflects connections between near neighbors: 
a13 = 0 and a14 = 0 because 1 is not a neighbor of 3 and 4. 

We close with counts for Gauss-Jordan and Gram-Schmidt-Householder: 

A -1 costs n3 multiply-subtract steps .. QR costs ~n3 steps. 

Start with AA-1 = I. The jth column of A-I solves Ax j = jth column of I. The left 
side costs %n3 as usual. (This is a one-time cost! Land U are not repeated.) The special 
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saving for the jth column of I comes from its first j - 1 zeros. No work is required on the 
right side until elimination reaches row j. The forward cost is !(n - jf instead of !n2 . 

Summing over j, the total for forward elimination on the n right sides is in3. The final 
multiply-subtract count for A-I is n 3 if we actually want the inverse: 

ForA-l n3 n3 (n2) 3 (L and V) + (; (forward) + n 2 (back substitutions) = n3
. (1) 

Orthogonalization (A to Q): The key difference from elimination is that each multiplier 
is decided by a dot product. That takes n operations, where elimination just divides by 
the pivot. Then there are n "multiply-subtract" operations to remove from column kits 
projection along column j < k (see Section 4.4). The combined cost is 2n where for 
elimination it is n. This factor 2 is the price of orthogonality. We are changing a dot 
product to zero where elimination changes an entry to zero. 

Caution To judge a numerical algorithm, it is not enough to count the operations. Beyond 
"flop counting" is a study of stability (Householder wins) and the flow of data. 

Reordering Sparse Matrices 

In discussing band matrices, we assumed a constant width w. The rows were in an optimal 
order. But for most sparse matrices in real computations, the width of the band is not 
constant and there are many zeros inside the band. Those zeros can fill in as elimination 
proceeds-they are lost. We need to renumber the equations to reduce jill-in, and thereby 
speed up elimination. 

Generally speaking, we want to move zeros to early rows and columns. Later rows 
and columns are shorter anyway. The "approximate minimum degree" algorithm in sparse 
MATLAB is greedy-it chooses the row to eliminate without counting all the consequences. 
We may reach a nearly full matrix near the end, but the total operation count to reach LV 
is still much smaller. To renumber for an absolute minimum of nonzeros in Land U is an 
NP-hard problem, much too expensive, and amd is a good compromise. 

We only need the positions of the nonzeros, not their exact values. Think of the n 
rows as n nodes in a graph. Node i is connected to node j if aij =j:. O. Watch to see how 
elimination can create a new edge from i to k. This means that a zero is filled in, which we 
are trying to avoid: 

When akj is eliminated, a multiple of the pivot row j = 1 is subtracted from row k = 3. 

If aji was nonzero in row j, then aki becomes nonzero in the new row k. A new edge. 

2 

[ 

1 I 1 
-2 1 0 
-2 0 2 ]-[ 1 1 1] o 3 2 

024 
1~ --+ 

~3 
a32 = 0 a32 = 2 a32 = 0 before a32 =j:. 0 after 



9.1. Gaussian Elimination in Practice 471 

In this example, the 1 's change the O's into 2's. Those entries fill in. 
The graph shows each step-look at the eliminationmovie on math.mit.edu/18086. 

The command nnz(L) counts the nonzero multipliers in the lower triangular L, find (L) 
will list them, and spy(L) shows them all. 

The matrix in the movie is the 2D version of our -1,2, -1 matrix. Instead of second 
differences along a line, the matrix has x and y differences on a plane grid. Each point is 
connected to its four nearest neighbors. But it is impossible to number all the points so that 
neighbors stay together. If we number by rows of the grid, there is a long wait to come 
around to the gridpoint above. 

The goal of colamd and symamd is a better ordering (permutation P) that reduces 
fill-in for PA and P ApT_by choosing the pivot with the fewest nonzeros below it. 

Fast Orthogonalization 

There are three ways to reach the important factorization A = QR. Gram-Schmidt works 
to find the orthonormal vectors in Q. Then R is upper triangular because of the order of 
Gram-Schmidt steps. Now we look at better methods (Householder and Givens), which 
use a product of specially simple Q's that we know are orthogonal. 

Elimination gives A = L U, orthogonalization gives A = QR. We don't want a 
triangular L, we want an orthogonal Q. L is a product of E's, with 1 's on the diagonal and 
the multiplier.fij below. Q will be a product of orthogonal matrices. 

There are two simple orthogonal matrices to take the place of the E's. The reflection 
matrices I - 2uu T are named after Householder. The plane rotation matrices are named 
after Givens. The simple matrix that rotates the xy plane by () is Q21: 

Givens rotation 
[

COS () - sin e 0] 
Q 21 = sin () cos eo. 

o 0 1 

Use Q21 the way you used E 21 , to produce a zero in the (2, 1) position. That determines 
the angle (). Bill Hager gives this example in Applied Numerical Linear Algebra: 

-153 114] [1 ....... 5 ...... 0 -155 -110] 
-79 -223 =0 75 -225 . 
-40 395 200 -40 395 

The zero came from -.8(90) + .6(120). No need to find (), what we needed was cos (): 

90 
cos () = ---;::=:=;:;;==::::::::=:~ 

J902 + 1202 
and 

-120 
sin () = ---;::=:=;:;;==::::::::=:~ 

J902 + 1202 
(2) 

Now we attack the (3,1) entry. The rotation will be in rows and columns 3 and 1. The 
numbers cos () and sin () are determined from 150 and 200, instead of 90 and 120. 

: :] = [25 ... ~ ..... . 
. ·0. 

-125 250] 
75 -225 . 

100 325 
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One more step to R. The (3,2) entry has to go. The numbers cos 8 and sin 8 now come 
from 75 and 100. The rotation is now in rows and columns 2 and 3: 

o 
.6 

.,.-'.8. 

o ] [250 -125 
.8 075 
~6. 0 joo' 

.] [250 -1",2",5",. . = 0 125 

. 0 0 

250] 125 . 
375 

We have reached the upper triangular R. What is Q? Move the plane rotations Qij to the 
other side to find A = QR-just as you moved the elimination matrices Eij to the other 
side to find A = L U: 

means (3) 

The inverse of each Qij is QL (rotation through -8). The inverse of Eij was not an 
orthogonal matrix! L U and Q R are similar but not the same. 

Householder reflections are faster because each one clears out a whole column below 
the diagonal. Watch how the first column a 1 of A becomes column r 1 of R: 

Jlettec~f()9;lJYlfi' . 
... HI = I - 2u 1 U I or (4) 

The length was not changed, and u I is in the direction of a I - r I. We have n - 1 entries 
in the unit vector u 1 to get n - 1 zeros in r 1. (Rotations had one angle 8 to get one zero.) 
When we reach column k, n - k available choices in the unit vector Uk lead to n - k zeros 
in r k. We just store the u's and r' s to know Q and R: 

Inverse of Hi is Hi (Hn- I ... Hl)A = R means A = (HI ... Hn-I)R = QR. (5) 

This is how LAPACK improves on Gram-Schmidt. Q is exactly orthogonal. 
Section 9.3 explains how A = QR is used in the other big computation of linear 

algebra-the eigenvalue problem. The factors QR are reversed to give Al = RQ which 
is Q-I AQ. Since Al is similar to A, the eigenvalues are unchanged. Then Al is factored 
into QIR I , and reversing the factors gives A2. Amazingly, the entries below the diagonal 
get smaller in AI. A2 • A3 , •.. and we can identify the eigenvalues. This is the "QR method" 
for Ax = AX, a big success of numerical linear algebra. 

Problem Set 9.1 

1 Find the two pivots with and without row exchange to maximize the pivot: 

A _ [ .001 0] 
- 1 1000· 

With row exchanges to maximize pivots, why are no entries of L larger than I? 
Find a 3 by 3 matrix A with all lau I < 1 and I£ij I < 1 but third pivot = 4. 
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2 Compute the exact inverse of the Hilbert matrix A by elimination. Then compute 
A -1 again by rounding all numbers to three figures: 

Ill-conditioned matrix A = hilb(3) = [i t ! l 
3 For the same A compute b = Ax for x = (1,1, 1) and x = (0,6, -3.6). A small 

change I1b produces a large change I1x. 

4 Find the eigenvalues (by computer) ofthe 8 by 8 Hilbert matrix aU = 1/0 + j -1). 
In the equation Ax = b with Ilbll = 1, how large can IIx II be? If b has roundoff 
error less than 10-16, how large an error can this cause in x? See Section 9.2. 

5 For back substitution with a band matrix (width w), show that the number of multi­
plications to solve U x = c is approximately wn. 

6 If you know Land U and Q and R, is it faster to solve LUx = b or QRx = b? 

7 Show that the number of multiplications to invert an upper triangular n by n matrix 
is about ~n3. Use back substitution on the columns of I, upward from I's. 

8 Choosing the largest available pivot in each column (partial pivoting), factor each A 
into PA = L U: 

and [
1 0 1] 

A= 2 2 0 . 
020 

9 Put 1 's on the three central diagonals of a 4 by 4 tridiagonal matrix. Find the cofac­
tors of the six zero entries. Those entries are nonzero in A -1 . 

10 (Suggested by C. Van Loan.) Find the L U factorization and solve by elimination 
when B = 10-3 ,10-6 , 10-9 ,10-12,10-15 : 

The true x is (1,1). Make a table to show the error for each B. Exchange the two 
equations and solve again-the errors should almost disappear. 

11 (a) Choose sin () and cos () to triangularize A, and find R: 

Givens rotation Q A = [C?S () - sin ()] [1 -1] = [* *] = R. 
21 sm e cos e 3 5 0 * 

(b) Choose sin () and cos e to make QAQ-l triangular. What are the eigenvalues? 
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12 When A is multiplied by a plane rotation Qij, which n2 entries of A are changed? 
When QijA is multiplied on the right by Qi/, which entries are changed now? 

13 How many multiplications and how many additions are used to compute Q ij A? 
Careful organization of the whole sequence of rotations gives ~n3 multiplications 
and ~n3 additions-the same as for QR by reflectors and twice as many as for L U. 

Challenge Problems 

14 (Turning a robot hand) The robot produces any 3 by 3 rotation A from plane rota­
tions around the x, y, z axes. Then Q32Q31 Q21A = R, where A is orthogonal so 
R is I! The three robot turns are in A = Q"2l Q-:;l Q-:;i. The three angles are "Euler 
angles" and det Q = 1 to avoid reflection. Start by choosing cos e and sin e so that 

Q21A = [~~:; - ~~: ~ ~] ~ [-; - i ;] is zero in the (2, 1) position. 
o 0 1 3 2 2-1 

15 Create the 10 by 10 second difference matrix K = toeplitz([2 - 1 zeros (1 , 8)]). 
Permute rows and columns randomly by KK = K(randperm(lO), randperm(IO». 
Factor by [L, U] = luCK) and [LL, UU] = lu(KK),andcountnonzerosbynnz(L) 
and nnz(LL). In this case L is in perfect tridiagonal order, but not LL. 

16 Another ordering for this matrix K colors the meshpoints alternately red and black. 
This permutation P changes the normal I, ... ,10 to 1,3,5,7,9,2,4,6,8,10: 

Red-black ordering P K P T = [~~ ;; ]. Find the matrix D. 

So many interesting experiments are possible. If you send good ideas they can 
go on the linear algebra website math.mit.edu/linearalgebra. I also recommend 
learning the command B = sparse(A), after which find(B) will list the nonzero 
entries and lu(B) will factor B using that sparse format for Land U. Only the 
nonzeros are computed, where ordinary (dense) MATLAB computes all the zeros too. 

17 Jeff Stuart has created a student activity that brilliantly demonstrates ill-conditioning: 

[
11 1.0001] [x] = [3.0001+e] Witherrors x=2-10000(e-E) 

1.0000 y 3.0000 + E e and E y = 1 + 10000(e - E) 

The algebra shows how errors e and E are amplified by 10000 unless e = E. 
As always, the solution of a 2 by 2 system is the meeting point of two lines. 

The neat idea is to replace mathematical lines by long sticks held by students. 
The sticks for these two equations are almost parallel, and A is almost singular. 
Perpendicular sticks come from well-conditioned equations. 

In Stuart's Shake a Stick activity, the students plot where the sticks cross 
(after multiple shakes). See www.plu.edu/"vstuartjlfor the wild movements of that 
crossing point (x, y), when the sticks are nearly parallel. 
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9.2 Norms and Condition Numbers 

How do we measure the size of a matrix? For a vector, the length is II x II. For a matrix, 
the norm is II A II. This word "norm" is sometimes used for vectors, instead of length. It 
is always used for matrices, and there are many ways to measure II A II. We look at the 
requirements on all "matrix norms" and then choose one. 

Frobenius squared all the lau 12 and added; his norm II A IIF is the square root. This treats 
A like a long vector with 112 components: sometimes useful, but not the choice here. 

I prefer to start with a vector norm. The triangle inequality says that II x + y II is not 
greater than IIx II + II y II. The length of 2x or - 2x is doubled to 211 x II. The same rules 
will apply to matrix norms: 

IleAIi = lelllAII· (1) 

The second requirements for a matrix norm are new, because matrices multiply. The 
norm IIAII controls the growth from x to Ax, and from B to AB: 

Growth factor IIA II IIAxl1 < IIAllllxl1 

This leads to a natural way to define II A II, the norm of a matrix: 

, . '. " 
.... '. 

l'hen(j"ifli(jlrti$thelatge~tj-4ti(j ·!lAx·1111I £11: IIAxl1 
IIAII = ~~~ Ilxll . 

(2) 

IIAx11/1lx11 is never larger than IIAII (its maximum). This says that IIAxl1 < IIAllllxll· 
Example 1 If A is the identity matrix I, the ratios are II x II I II x II. Therefore II I II = 1. If 
A is an orthogonal matrix Q, lengths are again preserved: II Q x II = II x II. The ratios still 
give II Q II = 1. An orthogonal Q is good to compute with: errors don't grow. 

Example 2 The norm of a diagonal matrix is its largest entry (using absolute values): 

A = [~ ~] hasnonn ItAIl = 3. The eigenvector x = [n has Ax = 3x. 

The eigenvalue is 3. For this A (but not all A), the largest eigenvalue equals the norm. 

For a positive definite symmetric matrix the norm is II A II = Amax (A). 

Choose x to be the eigenvector with maximum eigenvalue. Then II Ax II I II x II equals Amax. 
The point is that no other x can make the ratio larger. The matrix is A = QAQT, and the 
orthogonal matrices Q and Q T leave lengths unchanged. So the ratio to maximize is really 
IIAxll/llxll. The norm is the largest eigenvalue in the diagonal A. 
SymmetriC matrices Suppose A is symmetric but not positive definite. A = QAQT is 
still true. Then the norm is the largest of IA 11, IA21, ... , IAn I. We take absolute values, 
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because the norm is only concerned with length. For an eigenvector IIAx II = IIAx II = IAI 
times II x II. The x that gives the maximum ratio is the eigenvector for the maximum I A I. 

Unsymmetric matrices If A is not symmetric, its eigenvalues may not measure its true 
size. The norm can be larger than any eigenvalue. A very unsymmetric example has 
A I = A2 = ° but its norm is not zero: 

IIAII > Amax A = [~ ~] has norm 
IIAxl1 

IIAII = ~;~ Ilxli = 2. 

The vector x = (0,1) gives Ax = (2,0). The ratio oflengths is 2/1. This is the maximum 
ratio II A II, even though x is not an eigenvector. 

It is the symmetric matrix AT A, not the unsymmetric A, that has eigenvector 
x = (0,1). The norm is really decided by the largest eigenvalue of AT A: 

. . -'. " .' . 

't1!~itQtttt·i!l· AI(~yTIl1l1¢ri1¢;gi:J.1.9t) Is·ilie:~qlJ,atl!irtlot;pj*,m.lrK(Ar A): 

The un symmetric example with Amax(A) = ° has Amax(AT A) = 4: 

A = [~ ~] leads to AT A = [~ ~] with Amax = 4. So the norm is IIAII = .J4. 

For any A Choose x to be the eigenvector of AT A with largest eigenvalue Amax. The ratio 
in equation (4) is x T AT Ax = X T (Amax)X divided by x T x. This is Amax. 

No x can give a larger ratio. The symmetric matrix AT A has eigenvalues AI, ... ,An 
and orthonormal eigenvectors q I , q 2' . • ., q n' Every x is a combination of those vectors. 
Try this combination in the ratio and remember that q T q j = 0: 

xTATAx _ (ClqI +: .. + cnqn)T(CIAlqI +"'+CnAnqn) _ CrAI +"'+C~An 
xTx - (Clql + ... + cnqn)T(Clql + ... + cnqn) cr + ... + c~ 

The maximum ratio Amax is when all c's are zero, except the one that multiplies Amax. 

Note 1 The ratio in equation (4) is the Rayleigh quotient for the symmetric matrix AT A. 
Its maximum is the largest eigenvalue Amax (AT A). The minimum ratio is Amin (AT A). 
If you substitute any vector x into the Rayleigh quotient x T AT Ax / x T x, you are guar­
anteed to get a number between Amin(AT A) and Amax(AT A). 

Note 2 The norm II A II equals the largest singular value O"max of A. The singular values 
aI, . .. , ar are the square roots of the positive eigenvalues of AT A. So certainly 
amax = (Amax)I/2. Since U and Yare orthogonal in A = U:EyT , the norm is IIA II = O"max. 
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The Condition Number of A 

Section 9.1 showed that roundoff error can be serious. Some systems are sensitive, others 
are not so sensitive. The sensitivity to error is measured by the condition number. This 
is the first chapter in the book which intentionally introduces errors. We want to estimate 
how much they change x. 

The original equation is Ax = b. Suppose the right side is changed to b + I::!b 
because of roundoff or measurement error. The solution is then changed to x + I::!x. Our 
goal is to estimate the change I::!x in the solution from the change I::!b in the equation. 
Subtraction gives the error equation A (I::!x) = I::!b: 

Subtract Ax = b from A(x + I::!x) = b + ~b to find~(~¥X,::~;B~_' (5) 

The error is ~x = A-I ~h. It is large when A-I is large (then A is nearly singular). The 
error ~x is especially large when ~b points in the worst direction-which is amplified 
most by A-I. The worst error has lI~x II = IIA-IIIII~hll. 

This error bound II A-III has one serious drawback. If we multiply A by 1000, then 
A -1 is divided by 1000. The matrix looks a thousand times better. But a simple rescaling 
cannot change the reality of the problem. It is true that ~x will be divided by 1000, but so 
will the exact solution x = A-I h. The relative error II /).x 11/ II x II will stay the same. It is 
this relative change in x that should be compared to the relative change in h. 

Comparing relative errors will now lead to the "condition number" c = II A 1111 A-III. 
Multiplying A by 1000 does not change this number, because A-I is divided by 1000 and 
the condition number c stays the same. It measures the sensitivity of Ax = h. 

TJie,$(JtUti,Qn:'err(Jtis- -,e~$'t",an c ,./HA.U'U~ 7 tU,"tlnfeR.<~1J,'e~prlli'lg~'(fl1!;r;" . 
" -' --,. . .. -.', ' . . - ,- -. - ',- -,' - . ' .. " --'. -' .: ,-

.' .... ; II~xll II~hll: 
.' < c . 
, IIxll - Ilhll :" . '. ·Conditionnuml>e~, c. . . .", '. " " 

.,- " -'1"< ' 
,1'(."" 

.lJ~¥,1l~~~i6;~i&,tfJJ'+t'JJt;t ~l¢a!!gf'~~i~~It!¢~~'.~,*~:?'£'<;"·· .... 
lI~x II II/).AII -----'-'-- < c . 

Ilx + ~xll - IIAII 
• ,> 

Proof The original equation is h = Ax. The error equation (5) is ~x 
Apply the key property II Ax II < II A 1111 x II of matrix norms: 

IIhll < IIAllllxll and 

Multiply the left sides to get Ilhllll~xll, and multiply the right sides to get cllxll II~hll. 
Divide both sides by Ilhllllxll. The left side is now the relative error II~xll/llxll. The 
right side is now the upper bound in equation (6). 
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The same condition number c = II A IIII A-III appears when the error is in the matrix. 
We have ~A instead of ~b in the error equation: 

Subtract Ax = b from (A + ilA)(x + ~x) = b to find A(ilx) = -(~A)(x + ~x). 

Multiply the last equation by A-I and take norms to reach equation (7): 

II~xll < IIAIIIIA-IIIII~AII 
Ilx + ilxll - IIAII . 

Conclusion Errors enter in two ways. They begin with an error il A or ilb-a wrong 
matrix or a wrong b. This problem error is amplified (a lot or a little) into the solution error 
~x. That error is bounded, relative to x itself, by the condition number c. 

The error ilb depends on computer roundoff and on the original measurements of b. 
The error ilA also depends on the elimination steps. Small pivots tend to produce large 
errors in L and U. Then L + il L times U + il U equals A + il A. When il A or the 
condition number is very large, the error ~x can be unacceptable. 

Example 3 When A is symmetric, c = II A 1111 A-III comes from the eigenvalues: 

A = [~ ~] has norm 6. A-I - [i 0] h 1 - ° ~ as norm 2:' 

This A is symmetric positive definite. Its norm is Amax = 6. The norm of A -1 IS 

1 I Amin = ~. Multiplying norms gives the condition number II A II II A-III = Amaxl Amin: 

Condition number for positive definite A c = Amax = ~ = 3. 
Amin 2 

Example 4 Keep the same A, with eigenvalues 6 and 2. To make x small, choose b along 
the first eigenvector (1,0). To make ilx large, choose ilb along the second eigenvector 
(0,1). Then x = ib and ~x = ~ilb. The ratio Ililxll/llxll is exactly c = 3 times the 
ratio Ililbll/llbil. 

This shows that the worst error allowed by the condition number II A 1111 A -111 can 
actually happen. Here is a useful rule of thumb, experimentally verified for Gaussian 
elimination: The computer can lose log c decimal places to roundoff error. 

Problem Set 9.2 

1 Find the norms II A II = Amax and condition numbers c = Amaxl Amin of these positive 
definite matrices: 
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2 Find the norms and condition numbers from the square roots of Amax(AT A) and 
Amin(AT A). Without positive definiteness in A, we go to AT A ! 

3 Explain these two inequalities from the definitions (3) of II A II and II B II: 

IIABxl1 < IIAlllIBxll < IIAIIIIBllllxll· 

From the ratio of II A B x II to II x II, deduce that II A B II < II A II II B II. This is the key to 
using matrix norms. The norm of An is never larger than II A lin. 

4 Use IIAA-111 < IIAII IIA- 1 II to prove that the condition number is at least 1. 

5 Why is I the only symmetric positive definite matrix that has Amax = Amin = I? 
Then the only other matrices with II A II = I and II A-III = 1 must have AT A = I. 
Those are matrices: perfectly conditioned. 

6 Orthogonal matrices have norm II Q II = 1. If A = Q R show that II A II < II R II and 
also IIRII < IIAII. Then IIAII = IIQII IIRII. Find an example of A = L U with 
IIAII < IILIIIIUII· 

7 (a) Which famous inequality gives II (A + B)x II < IIAx II + IIBx II for every x? 

(b) Why does the definition (3) of matrix norms lead to IIA + BII < IIAII + IIBII? 

8 Show that if A is any eigenvalue of A, then I A I < II A II. Start from Ax = AX. 

9 The "spectral radius" peA) = IAmaxl is the largest absolute value of the eigenvalues. 
Show with 2 by 2 examples that peA + B) < peA) + pCB) and p(AB) < p(A)p(B) 
can both be false. The spectral radius is not acceptable as a norm. 

10 (a) Explain why A and A-I have the same condition number. 

(b) Explain why A and AT have the same norm, based on A(AT A) and A(AAT). 

11 Estimate the condition number of the ill-conditioned matrix A = [~ 1.0\01]' 
12 Why is the determinant of A no good as a norm? Why is it no good as a condition 

number? 

13 (Suggested by C. Moler and C. Van Loan.) Compute b - Ay and b - Az when 

b = [.217] A = [.780 .563] Y = [ .341] z = [ .999] . 
. 254 .913 .659 -.087 -1.0 

Is y closer than z to solving Ax = b? Answer in two ways: Compare the residual 
b-Ay tob-Az. Then compare y andztothetruex = (1,-1). Both answers can 
be right. Sometimes we want a small residual, sometimes a small 6.. x . 

14 (a) Compute the determinant of A in Problem 13. Compute A-I. 

(b) If possible compute II A II and II A -111 and show that c > 106 • 
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Problems 15-19 are about vector norms other than the usuallix II = ~. 

15 The "il norm" and the "ioo norm" of x = (Xl, . .. , Xn) are 

. ~ ... -" ',: ~~ : .. ~ . . '",~: ,- . 

; IlxilI = Ixii + ... + IXnl 
" . 

IIx 1100 = m~x IXi I· " 
I~l~n 

Compute the norms Ilxll and IIxllt and Ilxll oo ofthese two vectors inR5
: 

x = (1,1,1,1,1) x = (.1, .7, .3,.4, .5). 

16 Prove that II x 1100 < II x II < II x 111. Show from the Schwarz inequality that the ratios 
IIx 1IIIIx 1100 and Ilx II tllix II are never larger than,Jli. Which vector (Xl, . .. , xn) 
gives ratios equal to ,JIi? 

17 All vector norms must satisfy the triangle inequality. Prove that 

IIx + y 1100 < Ilx 1100 + Ily 1100 and Ilx + yilt < Ilxlli + Ilylll' 

18 Vector norms must also satisfy lie x II = Ie IlIx II. The norm must be positive except 
when x = O. Which of these are norms for vectors (Xl, X2) in R2? 

Ilx IIA = IXII + 21x21 

Ilxllc = Ilxll + Ilxll oo 

Ilx liB = min (lxIl.lx21) 

Ilx liD = IIAx II (this answer depends on A). 

Challenge Problems 

19 Show that x T y < II X 111 II y II 00 by choosing components Yi = ± 1 to make x T y as 
large as possible. 

20 The eigenvalues of the -1, 2, -1 difference matrix K are A = 2 - 2 cos (j Jr In + 1). 
Estimate Amin and,Amax and c = cond(K) = Amax/Amin as n increases: c ~ Cn2 

with what constant' C? 

Test this estimate with eig(K) and cond(K) for n = 10,100,1000. 

21 For unsymmetric matrices, the spectral radius p = max IAi I is not a norm 
(Problem 9). But still IIAn II grows or decays like pn for large 11. Compare those 
numbers for A = [1 1; 0 1.1] using the command norm. 

In particular A n ~ 0 when p < 1. This is the key to Section 9.3 with A = S-I T. 



9.3. Iterative Methods and Preconditioners 481 

9.3 Iterative Methods and Preconditioners 

Up to now, our approach to Ax = h has been direct. We accepted A as it came. We 
attacked it by elimination with row exchanges. This section is about iterative methods, 
which replace A by a simpler matrix S. The difference T = S - A is moved over to the 
right side of the equation. The problem becomes easier to solve, with S instead of A. But 
there is a price-the simpler system has to be solved over and over. 

An iterative method is easy to invent. Just split A (carefully) into S - T. 

Rewrite Ax = h Sx = Tx +h. (1) 

The novelty is to solve (1) iteratively. Each guess x k leads to the next x k+ 1: 

. ... . - . 

SXk+l = TXk + h . .. (2) 

Start with any Xo. Then solve SXl = Txo + h. Continue to the second iteration SX2 = 
T XI + h. A hundred iterations are very common-often more. Stop when (and if!) the new 
vector x k+ 1 is sufficiently close to x k-or when the residual r k = h - AXk is near zero. 
We choose the stopping test. Our hope is to get near the true solution, more quickly than by 
elimination. When the sequence Xk converges, its limit x = Xoo does solve equation (1). 
The proof is to let k --+ 00 in equation (2). 

The two goals of the splitting A = S - T are speed per step and fast convergence. 
The speed of each step depends on S and the speed of convergence depends on S-1 T: 

1 Equation (2) should be easy to solve for x k+ 1. The "preconditioner" S could be the 
diagonal or triangular part of A. A fast way uses S = LoUo, where those factors 
have many zeros compared to the exact A = LU. This is "incomplete LU". 

2 The difference x - Xk (this is the error ek) should go quickly to zero. Subtracting 
equation (2) from (1) cancels h, and it leaves the equation for the error e k: 

Error equation (3) 

At every step the error is multiplied by S-IT. If S-IT is small, its powers go quickly to 
zero. But what is "small"? 

The extreme splitting is S = A and T = O. Then the first step of the iteration is the 
original Ax = h. Convergence is perfect and S-1 T is zero. But the cost of that step is 
what we wanted to avoid. The choice of S is a battle between speed per step (a simple S) 
and fast convergence (S close to A). Here are some popular choices: 

J S = diagonal part of A (the iteration is called Jacobi's method) 

GS S = lower triangular part of A including the diagonal (Gauss-Seidel method) 

SOR S = combination of Jacobi and Gauss-Seidel (successive overrelaxation) 

ILU S = approximate L times approximate U (incomplete L U method). 



482 Chapter 9. Numerical Linear Algebra 

Our first question is pure linear algebra: When do the Xk'S converge to x? The answer 
uncovers the number IAlmax that controls convergence. In examples of J and GS and SOR, 
we will compute this "spectral radius" IAlmax. It is the largest eigenvalue of the iteration 
matrix B = S-lT. 

The Spectral Radius p (B) Controls Convergence 

Equation (3) is ek+l = S-lTek. Every iteration step multiplies the error by the same 
matrix B = S-IT. The error after k steps is ek = Bkeo. The error approaches zero 
if the powers of B = S-1 T approach zero. It is beautiful to see how the eigenvalues of 
B-the largest eigenvalue in particular-control the matrix powers Bk. 

· .1'be.p()w¢r&;,li~· •. · •. ~ppiQ~¢p.~¢rQ:if.ap4·;~hlyrif¢~~~~fgeIi~fl1ir~ .....• ()f •... B·' ha's.·.·····IXI·· < 1 •. 
. ' 'flt~.,.;gi~;ot~Q;~~~!:~i#~¢l!is,/~qnltf!ll~4.~y!h,l!s,p(!.cti;lJltt#J,1~*plP; p . max 1 l( B) I· 

. " - ,- .' -, -.. - -.,'. I \- ... ; \,'. '" :.~., '."" .. ':', '.,'. -.', '"," -'" . "'.~' ':'. "/ ,:C', ,_ ',' ',", .' _:: '" " "': ," .' -, '. :-' -,'. ',.- ,_,: 

The test for convergence is IAlmax < 1. Real eigenvalues must lie between -1 and 1. 
Complex eigenvalues A = a + ib must have IAI2 = a2 + b2 < 1. (Chapter 10 will 
discuss complex numbers.) The spectral radius "rho" is the largest distance from 0 to the 
eigenvaluesAt. .. . ,An of B = S-IT. Thisisp = IAlmax. 

To see why IAlmax < 1 is necessary, suppose the starting error eo happens to be an 
eigenvector of B. After one step the error is Beo = Aeo. After k steps the error is 
Bk eo = A k eo. If we start with an eigenvector, we continue with that eigenvector-and it 
grows or decays with the powers A k. This factor A k goes to zero when IA 1 < 1. Since this 
condition is required of every eigenvalue, we need p = IAlmax < 1. 

To see why IA Imax < 1 is sufficient for the error to approach zero, suppose eo is a 
combination of eigenvectors: 

eo =CIXI +",+cnxn leadsto ek =Cl(Adkxl +",+cn(Anlxn. (4) 

This is the point of eigenvectors! They grow independently, each one controlled by its 
eigenvalue. When we multiply by B, the eigenvector X; is multiplied by Ai. If alllA; I < I 
then equation (4) ensures that ek goes to zero. 

Example 1 B = [:: :~] has Amax = 1.1 B' = ['3 1:1] has Amax = .6 

B 2 is 1.1 times B. Then B 3 is (1.1)2 times B. The powers of B will blow up. 
Contrast with the powers of B'. The matrix (B,)k has (.6)k and (.5)k on its diagonal. 
The off-diagonal entries also involve pk = (.6)k, which sets the speed of convergence. 

Note There is a technical difficulty when B does not have n independent eigenvectors. (To 
produce this effect in B', change .5 to .6.) The starting error eo may not be a combination 
of eigenvectors-there are too few for a basis. Then diagonalization is impossible and 
equation (4) is not correct. We tum to the Jordan form when eigenvectors are missing: 

Jordan form J B = MJM- 1 and (5) 
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Section 6.6 shows how J and Jk are made of "blocks" with one repeated eigenvalue: 

The powers of a 2 by 2 block in J are 

If IAI < 1 then these powers approach zero. The extra factor k from a double eigenvalue is 
overwhelmed by the decreasing factor A k-1. This applies to all Jordan blocks. A block of 
size S + 1 has k S A k-S in J k , which also approaches zero when IA I < I. 

Diagonalizable or not: Convergence Bk -* 0 and its speed depend on p = IAlmax < 1. 

Jacobi versus Gauss-Seidel 

We now solve a specific 2 by 2 problem. Watch for that number IAlmax. 

Ax =b 
2u - v = 4 
-u + 2v =-2 has the solution [~] = [~] . (6) 

The first splitting is Jacobi's method. Keep the diagonal of A on the left side (this is S). 
Move the off-diagonal part of A to the right side (this is T). Then iterate: 

J~~o~i·.iteraii()n 
. . 

= Vk +4 
= Uk -2. 

Start from Uo = Vo = O. The first step finds u 1 = 2 and VI = -1. Keep going: 

[~] [-i] [3/~] [-1/~] [15/~] [-I/I~] approaches [~]. 
This shows convergence. At steps 1,3,5 the second component is -1, -1/4, -1/16. The 
error is multiplied by i every two steps. The components 0,3/2, 15/8 have errors 2, 4, i· 
Those also drop by 4 in each two steps. The error equation is S e k+ 1 = T e k: 

Error equation [~ i] e k+ 1 = [~ ~] e k or e k+ 1 = [4 ! ] e k· (7) 

That last matrix S-1 T has eigenvalues 4 and -4. So its spectral radius is p(B) = 4: 

has IAlmax = 4 and 4]2 = [i 0] o o.!.· 
4 

Two steps multiply the error by i exactly, in this special example. The important message 
is this: Jacobi's method works well when the main diagonal of A is large compared to the 
off-diagonal part. The diagonal part is S, the rest is - T. We want the diagonal to dominate 
and S-1 T to be small. 

The eigenvalue A = 4 is unusually small. Ten iterations reduce the error by 
210 = 1024. More typical and more expensive is IAlmax = .99 or .999. 
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The Gauss-Seidel method keeps the whole lower triangular part of A as S: 

Gauss-Seidel 2Uk+l = Vk + 4 
-uk+l + 2Vk+l = - 2 

or 
Uk+l = tVk + 2 

Vk+l = tUk+l - 1. 
(8) 

Notice the change. The new Uk+l from the first equation is used immediately in the second 
equation. With Jacobi, we saved the old Uk until the whole step was complete. With Gauss­
Seidel, the new values enter right away and the old Uk is destroyed. This cuts the storage in 
half. It also speeds up the iteration (usually). And it costs no more than the Jacobi method. 

Starting from (0,0), the exact answer (2,0) is reached in one step. That is an accident 
I did not expect. Test the iteration from another start Uo = 0 and Vo = -1: 

[ 
3/2] 

-1/4 [ 
15/8] 

-1/16 [ ~i j~~] approaches [~] . 
The errors in the first component are 2, 1/2, 1/8, 1/32. The errors in the second component 
are -1, -1/4, -1/16, -1/32. We divide by 4 in one step not two steps. Gauss-Seidel is 
twice as fast as Jacobi. We have PGS = (pJ)2. 

This double speed is true for every positive definite tridiagonal matrix. Anything is 
possible when A is strongly nonsymmetric-Jacobi is sometimes better, and both methods 
might fail. Our example is small and A is positive definite tridiagonal: 

The Gauss-Seidel eigenvalues are 0 and ~. Compare with t and -t for Jacobi. 

With a small push we can explain the successive overrelaxation method (SOR). The new 
idea is to introduce a parameter w (omega) into the iteration. Then choose this number w 
to make the spectral radius of S-1 T as small as possible. 

Rewrite Ax = b as wAx = wb. The matrix S in SOR has the diagonal of the 
original A, but below the diagonal we use wA. On the right side T is S - wA: 

\ 

SOR 
2Uk+l = (2 - 2W)Uk + WVk + 4w 
-WUk+l + 2Vk+l = (2 - 2W)Vk - 2w. 

(9) 

This looks more complicated to us, but the computer goes as fast as ever. Each new Uk+l 

from the first equation is used immediately to find Vk+l in the second equation. This is like 
Gauss-Seidel, with an adjustable number w. The key matrix is S-1 T: 

SOR iteration matrix (10) 

The determinant is (1 - W)2. At the best w, both eigenvalues tum out to equal 7 - 4J}, 
which is close to (~)2. Therefore SOR is twice as fast as Gauss-Seidel in this example. In 
other examples SOR can converge ten or a hundred times as fast. 
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I will put on record the most valuable test matrix of order n. It is our favorite -1, 2, 
-1 tridiagonal matrix K. The diagonal is 21. Below and above are -1 'so Our example had 
n = 2, which leads to cos}- = ~ as the Jacobi eigenvalue found above. Notice especially 
that this eigenvalue is squared for Gauss-Seidel: 

-I rr 
. S T has I). Imax = cos n + I 

.·Gauss~Seidel(S ___ ~1,2~.OmatriX): , S-IT has 1).lmax = (cos Jr )2 
n+l 

. s-1 T has 1).lmax = (cos Jr )2/(1 + sin Jr )2 
n+1 n+1 

Let me be clear: For the -1, 2, -1 matrix you should not use any of these iterations! 
Elimination is very fast (exact L U). Iterations are intended for large sparse matrices­
when a high percentage of the entries are zero. The not good zeros are inside the band, 
which is wide. They become nonzero in the exact Land U, which is why elimination 
becomes expensive. 

We mention one more splitting. The idea of "incomplete L U" is to set the small 
nonzeros in Land U back to zero. This leaves triangular matrices Lo and Uo which are 
again sparse. The splitting has S = Lo Uo on the left side. Each step is quick: 

Incomplete LU LOUOXk+1 = (LoUo - A)Xk + h. 

On the right side we do sparse matrix-vector multiplications. Don't mUltiply Lo times Uo, 
those are matrices. Multiply x k by Uo and then multiply that vector by Lo. On the left side 
we do forward and back substitutions. If LoUo is close to A, then 1).lmax is small. A few 
iterations will give a close answer. 

Multigrid and Conjugate Gradients 

I cannot leave the impression that Jacobi and Gauss-Seidel are great methods. Generally 
the "low-frequency" part of the error decays very slowly, and many iterations are needed. 
Here are two ideas that bring tremendous improvement. MUltigrid can solve problems of 
size n in O(n) steps. With a good preconditioner, conjugate gradients becomes one of the 
most popular and powerful algorithms in numerical linear algebra. 

Multigrid Solve smaller problems (often coming from coarser grids and doubled step­
sizes !:lx and !:ly). Each iteration will be cheaper and convergence will be faster. Then 
interpolate between the values computed on the coarse grid to get a quick and close head­
start on the full-size problem. Multigrid might go 4 levels down and back. 
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Conjugate gradients An ordinary iteration like Xk+l = Xk - AXk + b involves mul­
tiplication by A at each step. If A is sparse, this is not too expensive: Ax k is what we 
are willing to do. It adds one more basis vector to the growing "Krylov spaces" that con­
tain our approximations. But Xk+l is not the best combination of Xo, Axo, ... , Akxo. 
The ordinary iterations are simple but far from optimal. 

The conjugate gradient method chooses the best combination x k at every step. The 
extra cost (beyond one multiplication by A) is not great. We will give the CG iteration, 
emphasizing that this method was created for a symmetric positive definite matrix. When 
A is not symmetric, one good choice is GMRES. When A = AT is not positive definite, 
there is MINRES. A world of high-powered iterative methods has been created around the 
idea of making optimal choices of each successive x k. 

My textbook Computational Science and Engineering describes multigrid and CG in 
much more detail. Among books on numerical linear algebra, Trefethen-Bau is deservedly 
popular (others are terrific too). Golub-Van Loan is a level up. 

The Problem Set reproduces the five steps in each conjugate gradient cycle from xk-l 
to Xk. We compute that new approximation Xb the new residual rk = b - AXb and the 
new search direction d k to look for the next x k+ 1. 

I wrote those steps for the original matrix A. But a preconditioner S can make con­
vergence much faster. Our original equation is Ax = b. The preconditioned equation is 
S-l Ax = S-lb. Small changes in the code give the preconditioned conjugate gradient 
method-the leading iterative method to solve positive definite systems. 

The biggest competition is direct elimination, with the equations reordered to take max­
imum advantage of many zeros in A. It is not easy to outperform Gauss. 

Iterative Methods for Eigenvalues 

We move from Ax = b to Ax = AX. Iterations are an option for linear equations. They 
are a necessity for eigenvalue problems. The eigenvalues of an n by n matrix are the roots 
of an nth degree polynomial. The determinant of A - AI starts with (_A)n. This book 
must not leave the impression that eigenvalues should be computed that way! Working 
from det(A - AI) = 0 is a very poor approach-except when n is small. 

For n > 4 there is no formula to solve det(A - AI) = O. Worse than that, the A's 
can be very unstable and sensitive. It is much better to work with A itself, gradually mak­
ing it diagonal or triangular. (Then the eigenvalues appear on the diagonal.) Good computer 
codes are available in the LAPACK library-individual routines are free on 
www.netlib.org/lapack.This library combines the earlier LINPACK and EISPACK, with 
many improvements (to use matrix-matrix operations in the Level 3 BLAS). It is a collec­
tion of Fortran 77 programs for linear algebra on high-performance computers. For your 
computer and mine, a high quality matrix package is all we need. For supercomputers with 
parallel processing, move to ScaLAPACK and block elimination. 

We will briefly discuss the power method and the QR method (chosen by LAPACK) 
for computing eigenvalues. It makes no sense to give full details of the codes. 
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1 Power methods and inverse power methods. Start with any vector Uo. Multiply by 
A to find u 1. Multiply by A again to find U2. If Uo is a combination of the eigenvectors, 
then A multiplies each eigenvector x i by Ai. After k steps we have (Ai )k: 

(11) 

As the power method continues, the largest eigenvalue begins to dominate. The vectors 
Uk point toward that dominant eigenvector. We saw this for Markov matrices in Chapter 8: 

A = [.9 .3] 
.1 .7 

has Amax = I with eigenvector [.75] 
.25 . 

Start with Uo and multiply at every step by A: 

Uo = [~] , Ul = [:i] , U2 = [:~:] is approaching Uoo = [:~;l 

The speed of convergence depends on the ratio of the second largest eigenvalue A2 to the 
largest A 1. We don't want A I to be small, we want A2/ A I to be small. Here A2 = .6 and 
Al = 1, giving good speed. For large matrices it often happens that IA2/All is very close 
to 1. Then the power method is too slow. 

Is there a way to find the smallest eigenvalue-which is often the most important in 
applications? Yes, by the inverse power method: Multiply Uo by A-I instead of A. Since 
we never want to compute A-I, we actually solve AUI = Uo. By saving the L U factors, 
the next step AU2 = Ul is fast. Step k has AUk = Uk-I: 

Inverse power method (12) 

Now the smallest eigenvalue Amin is in control. When it is very small, the factor 1 / A~in is 
large. For high speed, we make Amin even smaller by shifting the matrix to A - A * I. 

That shift doesn't change the eigenvectors. (A * might come from the diagonal of A, 
even better is a Rayleigh quotient x T AX/xT x). If A * is close to Amin then (A - A'" I)-I 
has the very large eigenvalue (Amin - A *)-1. Each shifted inverse power step multiplies the 
eigenvector by this big number, and that eigenvector quickly dominates. 

2 The QR Method This is a major achievement in numerical linear algebra. Fifty years 
ago, eigenvalue computations were slow and inaccurate. We didn't even realize that solv­
ing det(A - AI) = 0 was a terrible method. Jacobi had suggested earlier that A should 
gradually be made triangular-then the eigenvalues appear automatically on the diagonal. 
He used 2 by 2 rotations to produce off-diagonal zeros. (Unfortunately the previous zeros 
can become nonzero again. But Jacobi's method made a partial comeback with parallel 
computers.) At present the QR method is the leader in eigenvalue computations and we 
describe it briefly. 

The basic step is to factor A, whose eigenvalues we want, into QR. Remember from 
Gram-Schmidt (Section 4.4) that Q has orthonormal columns and R is triangular. For 
eigenvalues the key idea is: Reverse Q and R. The new matrix (same ).'s) is Al = RQ. 
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The eigenvalues are not changed in RQ because A = QR is similar to Al = Q-I AQ: 

Al = RQ has the same).. QRx = AX gives RQ(Q-I X ) = A(Q-1X). (13) 

This process continues. Factor the new matrix A 1 into Q 1 R 1. Then reverse the factors 
to R 1 Q 1. This is the similar matrix A2 and again no change in the eigenvalues. Amazingly, 
those eigenvalues begin to show up on the diagonal. Often the last entry of A4 holds an 
accurate eigenvalue. In that case we remove the last row and column and continue with a 
smaller matrix to find the next eigenvalue. 

Two extra ideas make this method a success. One is to shift the matrix by a multiple of 
1, before factoring into QR. Then RQ is shifted back: 

Ak+ 1 has the same eigenvalues as Ab and the same as the original Ao = A. A good shift 
chooses c near an (unknown) eigenvalue. That eigenvalue appears more accurately on the 
diagonal of Ak+I-which tells us a better c for the next step to Ak+2. 

The other idea is to obtain off-diagonal zeros before the QR method starts. An elimi­
nation step E will do it, or a Eivens rotation, but don't forget E- I (to keep A): 

EAE- I = [1 1 
-1 ] [ ~ ~ ;] [1 1 ] [~~;]. Same)..'s. 

1167 11 042 

We must leave those nonzeros 1 and 4 along one subdiagonal. More E's could remove 
them, but E -1 would fill them in again. This is a "H essenberg matrix" (one nonzero 
subdiagonal). The zeros in the lower left comer will stay zero through the QR method. 
The operation count for each QR factorization drops from O(n3) to O(n2). 

Golub and Van Loan give this example of one shifted QR step on a Hessenberg matrix. 
The shift is 71, taking 7 from all diagonal entries (then shifting back for AI): 

[1 2 '3] 
A = 4 5 6 

o .001 7 [

-.54 
leads to Al = 0.31 

1.69 0.835] 
6.53 -6.656. 

.00002 7.012 

Factoring A - 7 1 into QR produced Al = RQ + 71. Notice the very small number .00002. 
The diagonal entry 7.012 is almost an exact eigenvalue of AI, and therefore of A. Another 
QR step on Al with shift by 7.0121 would give terrific accuracy. 

For large sparse matrices I would look to ARPACK. Problems 27-29 describe the 
Arnoldi iteration that orthogonalizes the basis--each step has only three terms when A 
is symmetric. The matrix becomes tridiagonal and still orthogonally similar to the original 
A: a wonderful start for computing eigenvalues. 
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Problem Set 9.3 

Problems 1-12 are about iterative methods for Ax = b. 

1 Change Ax = b to x = (/ - A)x + b. What are Sand T for this splitting? What 
matrix S-lT controls the convergence of xk+l = (I - A)Xk + b? 

2 If A is an eigenvalue of A, then is an eigenvalue of B = / - A. The real 
eigenvalues of B have absolute value less than 1 if the real eigenvalues of A lie 
between and __ 

3 Show why the iteration x k+ 1 = (I - A)x k + b does not converge for A = [-I -U. 
4 Why is the norm of Bk never larger than II B Ilk? Then II B II < 1 guarantees that the 

powers Bk approach zero (convergence). No surprise since IAlmax is below IIBII. 

S If A is singular then all splittings A = S - T must fail. From Ax = 0 show that 
S-ITx = x. So this matrix B = S-lT has A = I and fails. 

6 Change the 2 's to 3 's and find the eigenvalues of S-1 T for Jacobi's method: 

SXk+l = TXk + b is [~ ~] xk+l = [~ ~] Xk + b. 

7 Find the eigenvalues of S-1 T for the Gauss-Seidel method applied to Problem 6: 

[_~ ~]Xk+l=[6 ~]Xk+b. 
Does IAlmax for Gauss-Seidel equallAI~ax for Jacobi? 

8 For any 2 by 2 matrix [~ ~] show that I A I max equals I b c / a d I for Gauss-Seidel and 
Ibc/adI 1/ 2 for Jacobi. We need ad =f. 0 for the matrix S to be invertible. 

9 The best w produces two equal eigenvalues for S-1 T in the SOR method. Those 
eigenvalues are w - 1 ,because the determinant is (w - 1)2. Set the trace in equa­
tion (10) equal to (w -"1) + (w - 1) and find this optimal w. 

10 Write a computer code (MATLAB or other) for the Gauss-Seidel method. You can 
define Sand T from A, or set up the iteration loop directly from the entries aij. Test 
it on the -1, 2, -1 matrices A of order 10, 20, 50 with b = (1,0, ... ,0). 

11 The Gauss-Seidel iteration at component i uses earlier parts of X new : 

Gauss-Seidel 

If every xpew = xpld how does this show that the solution x is correct? How does 
the formula change for Jacobi's method? For SOR insert w outside the parentheses. 
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12 The SOR splitting matrix S is the same as for Gauss-Seidel except that the diagonal 
is divided by cv. Write a program for SOR on an n by n matrix. Apply it with (j) = 1, 
1.4, 1.8, 2.2 when A is the -1, 2, -1 matrix of order n = 10. 

13 Divide equation (11) by A 1 and explain why I A2 j A 1 I controls the convergence of the 
power method. Construct a matrix A for which this method does not converge. 

14 The Markov matrix A = [:~ :~] has A = 1 and .6, and the power method Uk = A k Uo 

converges to [:i~]. Find the eigenvectors of A-I. What does the inverse power 

method U-k = A-k Uo converge to (after you multiply by .6k )? 

15 The tridiagonal matrix of size n - 1 with diagonals -1, 2, -1 has eigenvalues 
Aj = 2 - 2cos(jrrjn). Why are the smallest eigenvalues approximately (jrrjn)2? 
The inverse power method converges at the speed Al j A2 ~ 1 j 4. 

16 For A = [-i -1] apply the power method Uk+l = AUk three times starting with 
Uo = [A]. What eigenvector is the power method converging to? 

17 In Problem 11 apply the inverse power method uk+ 1 = A-I Uk three times with the 
same uo. What eigenvector are the Uk'S approaching? 

18 In the QR method for eigenvalues, show that the 2,1 entry drops from sin e in 
A = QR to -sin3 e in RQ. (Compute Rand RQ.) This "cubic convergence" 
makes the method a success: 

Sine] = QR = [co.se -Sine] [1 ?] o sm e cos eo? . 

19 If A is an orthogonal matrix, its Q R factorization has Q = and R = __ 
Therefore RQ = . These are among the rare examples when the QR method 
goes nowhere. 

20 The shifted QR method factors A - cI into QR. Show that the next matrix Al -
R Q + c I equals Q -1 A Q. Therefore A 1 has the eigenvalues as A (but is 
closer to triangular). 

21 When A = AT, the "Lanczos method" finds a's and b's and orthonormal q's so that 
Aqj = bj - 1q j-l +a jqj +b jq j+l (with qo = 0). Multiply by q} to find a formula 
for a j. The equation says that A Q = Q T where T is a tridiagonal matrix. 

22 The equation in Problem 21 develops from this loop with bo = 1 and r 0 = any q 1 : 

Write a code and test it on the -1, 2, -1 matrix A. QT Q should be I. 
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23 Suppose A is tridiagonal and symmetric in the QR method. From Al _ Q-I AQ 
show that Al is symmetric. Write Al = RAR-I to show that Al is also tridiagonal. 
(If the lower part of A I is proved tridiagonal then by symmetry the upper part is too.) 

Symmetric tridiagonal matrices are the best way to start in the QR method. 

Questions 24-26 are about quick ways to estimate the location of the eigenvalues. 

24 If the sum of lau I along every row is less than 1, explain this proof that IA I < 1. 
Suppose Ax = AX and IXi I is larger than the other components of x. Then I 'EaU x j I 
is less than IXi I. That means IAXi I < IXi I so IAI < 1. 

(GershgQrincird¢s) Every eigenvalue Qf Ais in OI'leor ,more of n cire;les. Each 

Gin:le iSGeI1tet:e4~ta,di~gQ.Ilal·eI1tryCl;U wit1tI'a4i~$ rj = 'E j#i lau I . 

This/ollows/rom (A - aU)xi = 'Ej#iaijXj. If Ixil is larger than the other compo­
nents of x, this sum is at most ri IXi I. Dividing by IXi I leaves IA - au I < ri. 

25 What bound on IAlmax does Problem 24 give for these matrices? What are the three 
Gershgorin circles that contain all the eigenvalues? Those circles show immediately 
that K is at least positive semidefinite (actually definite) and A has Amax = 1. 

[

.3 
A = .3 .4 

.5 .2] .4 .3 

.1 .5 

26 These matrices are diagonally dominant because each au > ri = absolute sum along 
the rest of row i. From the Gershgorin circles containing all A'S, show that diagonally 
dominant matrices are invertible. 

" [I .3 .4] 
A = .3 I .5 

.4 .5 1 [

4 2 
A = I 3 

2 2 il 
Problems 27-30 present two fundamental iterations. Each step involves Aq or Ad. 

The key point for large matrices is that matrix-vector multiplication is much faster 
than matrix-matrix multiplication. A crucial construction starts with a vector b. Re­
peated mUltiplication will produce Ab, A 2 b, ... but those vectors are far from orthogonal. 
The "Arnoldi iteration" creates an orthonormal basis q I ' q 2' ... for the same space by the 
Gram-Schmidt idea: orthogonalize each new Aq n against the previous q l' ... , q n-l' The 
"Krylov space" spanned by b, Ab, ... ,An-1b then has a much better basis ql"'" qn-
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Here in pseudocode are two of the most important algorithms in numerical linear 
algebra: Arnoldi gives a good basis and CO gives a good approximation to x = A-I b. 

Arnoldi Iteration 

q1 = b/llbll 
for n = 1 to N - 1 

v = Aqn 
for j = 1 to n 

h jn = q}v 
v = v -hjnqj 

hn+1,n = Ilvll 
qn+1 = v/ hn+1,n 

Conjugate Gradient Iteration for Positive Definite A 

Xo = O,ro = b,do = ro 

for n = 1 to N 
an = (r !-1 rn-d/(d~_l Adn-d step length Xn-1 to Xn 
Xn = Xn-l + and n- 1 approximate solution 
rn = rn-l - anAdn- 1 new residual b - AXn 
f3n = (r !rn)/(r !-1 r n-1) improvement this step 
d n = rn + f3ndn-1 next search direction 

% Notice: only 1 matrix-vector multiplication Aq and Ad 

For conjugate gradients, the residuals r n are orthogonal and the search directions are A­
orthogonal: all d} Ad k = 0. The iteration solves Ax = b by minimizing the error e T Ae 
over all vectors in the Krylov subspace. It is a fantastic algorithm. 

27 For the diagonal matrix A = diag([1 2 3 4]) and the vector b = (1,1,1,1), go 
through one Arnoldi step to find the orthonormal vectors q 1 and q 2. 

28 Arnoldi's method is finding Q so that AQ = QH (column by column): 

h11 h12 hlN 

=QH 
h21 h22 h2N 

° h32 ° ° . hNN 

H is a "Hessenberg matrix" with one nonzero subdiagonal. Here is the crucial fact 
when A is symmetric: The matrix H = Q-l AQ = QT AQ is symmetric and 
therefore tridiagonal. Explain that sentence. 

29 This tridiagonal H (when A is symmetric) gives the Lanczos iteration: 

\ 

Three terms only 

From H = Q-1 AQ, why are the eigenvalues of H the same as the eigenvalues 
of A? For large matrices, the "Lanczos method" computes the leading eigenvalues 
by stopping at a smaller tridiagonal matrix Hk. The QR method in the text is applied 
to compute the eigenvalues of Hk. 

30 Apply the conjugate gradient method to solve Ax = b = ones(100, 1), where A is 
the -1,2, -1 second difference matrix A = toeplitz([2 - 1 zeros(I,98)]). Oraph 
x 10 and X20 from CO, along with the exact solution x. (Its 100 components are 
Xi = (ih - i 2h2)/2 with h = 1/101. "plot(i, x(i))" should produce a parabola.) 




